In [1]:
%pylab inline
In [2]:
h = 6.62606957e-34 # Planck Contant
hbar = h/(2*pi) # Planck Constant over 2 Pi
heV = 4.136E-15 # h in eV
qe = 1.60217657e-19 # Electric Charge
hbar = h/2/pi
DelAl = 0.180e-3 * qe # V
kB = 1.3806488e-23 # Boltzmann Constant
e0 = 8.854e-12 # Permittivity vacuum, F/m
In [3]:
# 1 : ground
# 2 : botton Cap
# 3 : Top Cap
# 4 : Gate
C12 = 113*1e-15
C13 = 84*1e-15
C14 =58*1e-15
C23 =50.134*1e-15
C24 = 0.607*1e-15
C34 =9.826*1e-15
Cj = 2 * 1e-15 # Junctions
Cg = (C34+C13)*(C24+C12)/(C34+C13+C12+C24) # Gate capacitance
Ct = Cg + C23 + Cj # Total Capacitance
print("Ct = ", Ct/1e-15, 'fF')
Ec = qe**2/(2*Ct)/h
print('Ec =',Ec/1e9,'GHz')
R = 20e3 # Ohms
T = 20e-3 # K
Ej =2 * DelAl*tanh(DelAl/(2*kB*T))/(8*qe**2*R)
#Ej = 2*DelAl/(8*qe*R)
print('Ej =', Ej/1e9,'GHz')
E01 = sqrt(8*Ec*Ej)
print('w01 = ', E01/1e9, 'GHz')
beta = Cg/Ct
Vrms = sqrt(hbar*2*pi*5e9/2/beta)
mat = 1/2*(Ej/8/Ec)**(1/4)/sqrt(2)
g = 2*beta*qe*Vrms*mat/h
print('g =', g,'MHz')
In [4]:
Vrms,mat
Out[4]:
In [5]:
# Cavity kappa
Q = 20e3
freqCav = 5e9
kappa = freqCav/Q
print('Kappa =', kappa/1e9, ' GHz')
In [6]:
# qubit
Qqubit = 4.3e9/1e6
freqQubit = 4.3e9
gamma = freqQubit/Qqubit
print('Gamma =', gamma/1e9, ' GHz')
In [7]:
ls
In [8]:
In [8]:
In [9]:
In [10]:
In [11]:
In [12]:
Out[12]:
In [14]:
3.14158*432
Out[14]:
In [15]:
Out[15]:
In [24]:
In [ ]: